2,301 research outputs found

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Density profiles and density oscillations of an interacting three-component normal Fermi gas

    Full text link
    We use a semiclassical approximation to investigate density variations and dipole oscillations of an interacting three-component normal Fermi gas in a harmonic trap. We consider both attractive and repulsive interactions between different pairs of fermions and study the effect of population imbalance on densities. We find that the density profiles significantly deviate from those of non-interacting profiles and extremely sensitive to interactions and population imbalance. Unlike for a two-component Fermi system, we find density imbalance even for balanced populations. For some range of parameters, one component completely repels from the trap center giving rise a donut shape density profile. Further, we find that the in-phase dipole oscillation frequency is consistent with Kohn's theorem and other two dipole mode frequencies are strongly effected by the interactions and the number of atoms in the harmonic trap.Comment: Total seven pages with five figures. Published versio

    Multi-year Measurements of Black Carbon Aerosol over Barrow and Ny-Alesund in the Arctic

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Get PDF
    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe

    Effects of Heat Treatments on Steels for Bearing Applications

    Get PDF
    AISI 52 100, 440C, REX20, and Crucible CRU80 steel samples were exposed to 16 different heat treatments to vary the levels of retained austenite. Rockwell C hardness measurements, optical microscopy, and compression testing were used to compare the properties of the different steels

    A control Lyapunov function approach to multiagent coordination

    Full text link

    Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

    Get PDF
    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.This research was funded by the NOAA Climate Program using measurements funded by the US Department of Energy Atmospheric System Research program. The authors would like to express their gratitude to the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model. We would like to thank also the Openair project. G. Titos was funded by the Spanish Ministry of Economy and Competitiveness – Secretariat of Science, Innovation and Development under grants BES-2011-043721 and EEBB-I-13-06456, and projects P10-RNM-6299, CGL2010-18782 and EU INFRA-2010-1.1.16-262254

    A Model-Driven Engineering Approach for Immersive Mixed-Reality Environments

    Full text link
    corecore